
Ultra-Short Time Batching and Unscented Kalman Inversion for
Calibration of Expensive Chaotic Models

Teo S. Price-Broncuciaa,∗, Rebecca E. Morrisona

aComputer Science, University of Colorado Boulder, 1111 Engineering Drive ECOT 717, 430 UCB Boulder, CO
80309, USA

Abstract

Computer models traditionally used for weather and climate prediction have extremely high compu-
tational costs. While reduced models exist, their utility is limited in part because their calibration
poses a host of difficulties, including chaotic dynamics that prevent the use of adjoint methods,
computation costs that become unreasonable when sampling approaches require many forward runs
with long ergodic trajectories, and large existing code bases that necessitate black box approaches.
Recently, Unscented Kalman Inversion (UKI) methods have shown promise for such models by
providing approximate derivatives of parameters in order to reach convergence using relatively few
forward model runs. Previous UKI applications have required expensive ergodic trajectories. In-
spired by recent work in consistency testing for climate models, we instead sample many ultra-short
model trajectories to greatly reduce the calibration cost of a canonical chaotic test case.
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1. Introduction

Modern Global Climate Models (GCMs) can require hundreds of thousands of core hours for a
single simulation. The high costs prevent the use of such models in most educational and industrial
applications. In the scientific sphere, these costs preclude activities requiring many model runs, such
as uncertainty quantification and the exploration of rare events. Such tasks require computationally
cheaper alternative models but development and adoption of less expensive, or reduced, models is
contingent on effective and efficient parameter calibration.

The calibration of GCMs poses multiple problems. First, they often involve large existing code
bases, which are developed by domain experts and may not support the machinery required for
automatic calculation of gradients. The Community Earth System Model, a widely used GCM,
contains over one million lines of Fortran code. Second, they exhibit strong chaotic dynamics.
Combined with the size of the code-base, this precludes the use of adjoint methods for gradient
calculation [1] and requires the use of long trajectories to ensure stable ergodic averaging [2].
Third, even reduced weather and climate models can still be computationally expensive, requiring
on the order of an hour of wall-clock to compute a typical trajectory length, preventing the use of
sampling-based calibration methods like Markov Chain Monte Carlo.

Recent work in the field of climate model consistency testing has shown that comparing en-
sembles of ultra-short simulations can achieve similar performance to the traditional use of multi-
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hundred year simulations [3]. These short simulations each simulate just a few hours, resulting in a
vast speedup from traditional approaches and enabling comparison before chaotic effects take over.
While the goals of consistency testing—i.e., to ensure that changes to compilers, hardware, etc.
do not not impact the scientific conclusions of the model—are narrower than those of calibration,
these results give some confidence that information about large climate models can be obtained
from ultra-short model runs.

Figure 1: Demonstration of splitting a single
long chaotic trajectory into many ultra-short
samples for use in calibration.

Recent deep-learning models for weather prediction [4]
have also used short time intervals of observation data.
However, these approaches do not apply to black box
models, and the goals are generally different from our
work, with a focus on building deep-learning models di-
rectly from observations instead of the physics-based re-
duced models we consider here.

In this work, we aim to reduce the computational cost
of parameter calibration when ground-truth data is gen-
erated by a high-fidelity computer model, and the model
to be calibrated is too expensive for sampling approaches,
exhibits chaotic dynamics, and precludes the use of ad-
joint methods. By considering a single long observation
as a collection of many ultra-short simulations (fig. 1),
our approach is able to reduce the computational costs
of calibrating parameters of chaotic models by more than
90% when compared to the use of full ergodic trajectories.

2. Methodology

In this work we extend Unscented Kalman Inversion (UKI) to perform calibration, that is, to
determine an unknown set of parameters θ of a known model G(θ,u0,∆t) by comparing outputs
(or statistics of those outputs like higher moments) of said model to known quantities ytrue (e.g.,
high-fidelity model outputs). Beginning from initial state u0 and running the model forward for
∆t time, we denote the D-dimensional full output of the model as z ∈ RD. The transformation
from full model output z to the C-dimensional space of known outputs y ∈ RC is described by an
observation operator as y = φ(z).

UKI computes a deterministic ensemble of model runs at each calibration iteration to generate
an approximate gradient of parameters to outputs. Whereas previous works relied on long ergodic
trajectories and their associated time-averaged outputs, we split ytrue and z into “ultra-short” sub-
trajectories of length δt, yielding ∆t

δt = N samples. We select a value of δt that is long enough to
enable measurable spread in ensemble members, but too short for the exponential effects of chaotic
dynamics to dominate. At each UKI iteration, parameter updates are averaged for B random
samples from the N total samples. (For a full description of UKI, see [5]). We term this approach
ultra-short time batching, outlined as:

1. Split true full output ztrue and transformed output ytrue into N samples of length δt.
2. Estimate noise in observations to set UKI parameter Σν , analogous to setting step size.
3. Repeat until convergence:

(a) Run UKI iteration to compute B separate parameter updates using B random samples.
(b) Average the parameter updates to get new estimate of parameters θ.
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We find batch sampling across the entire trajectory advantageous for two reasons. First, in order
to simulate structural differences between a high-fidelity model and a reduced one, Gaussian noise
is added to ytrue. Batching provides a better estimate of the true gradient under noise, enabling
faster convergence to good parameters. Second, depending on the point in the trajectory, a model
may be more or less sensitive to certain parameters. For instance, a climate model parameter
that controls land-ice reflectivity may have a bigger impact during the southern hemisphere sum-
mer due to the asymmetrical distribution of land-ice on earth. Batching averages these impacts.

3. Test Problem: Lorenz ’96

Figure 2: The RMSE loss due to perturbed
parameters (F and c) for ergodic and ultra-
short Lorenz ’96 trajectories. Chaotic dy-
namics result in a very rough loss-landscape,
inhibiting calibration.

As a test problem, we consider the Lorenz ’96 model [6].
The model emulates the fast and slow evolving variables
present in GCMs and, at the parameter values used here,
exhibits strong chaotic behavior. The impact of chaotic dy-
namics on the loss landscape is seen in fig. 2; this chaotic
dependence on parameters can make calibration difficult [1].
However, the loss landscape for a single ultra-short trajec-
tory appears relatively smooth.

The model consists of K slow variables Xk, each cou-
pled to J fast variables Yj,k. Both types are periodic, such
that Xk+K = Xk and Yj+J,k = Yj,k+1. The differential
equations, defined with notation from [7], are:

dXk

dt
= −Xk−1(Xk−2 −Xk + 1)−Xk + F − hcȲk (1)

dYj,k
dt

= c

(
−bYj+1,k(Yj+2,k − Yj−1,k)− Yj,k +

h

J
Xk

)
(2)

Ȳk =
1

J

J∑
j=1

Yj,k. (3)

In this work we set K = 36, J = 10 for a total of 396
variables. The ground truth is generated with [h, F, c, b] =
[1, 10, log(10), 10]. We begin from a prior estimate with
mean [0.1, 5, 2, 7] and independent variances [1, 10, 0.1, 1].
The model is run until t = 1e4.

For the ultra-short batching we set δt = 0.01, resulting
in N = 1e6 total samples. Ground-truth samples are per-
turbed using additive, i.i.d. Gaussian noise with diagonal
variance σ2 = 0.0001 ·ztrue, i.e., noise is applied to both the
initial state u0 of each sample, and the transformed output
y = φ(z), where

φ(z) =
1

K

∑
k

(
Xk, Ȳk, X

2
k , XkȲk, Y 2

k

)
. (4)

4. Results and Discussion

We find that calibration of the Lorenz ’96 model requires substantially less computation with
ultra-short time batching than full ergodic runs. As seen in fig. 3, the ultra-short time batching
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Figure 3: Lorenz ’96 calibration results and relative computational costs. Using UKI, the ultra-short approach
converges (within 1.5% of θtrue) using just 5.2% of the computational cost of the ergodic approach. One unit of
computational cost is equivalent to an ensemble of forward model runs with trajectory lengths of t = 1.

method achieves parameter convergence (all parameters within 1.5% of true values) using just 5.2%
of the computational cost required when using ergodic trajectories. Alternative hyper-parameters
of UKI may result in more efficient ergodic performance, but are unlikely to erase the demonstrated
improvement entirely.

This substantial cost improvement makes ultra-short time batching a compelling addition to
a calibration toolkit for the expensive chaotic models found in climate and weather prediction. If
the values of interest for calibrated models are time-averaged quantities, e.g., average yearly tem-
perature, it is simple to test the parameters found using ultra-short time batching with additional
ergodic model runs. If needed, further ergodic calibration can be done with less wasted compu-
tation. Future work includes the development of adaptive methods for noise estimation (which in
turn controls the UKI step size), analogous to deep-learning methods that adjust the learning rate,
and tests of more realistic climate models with substantial model inadequacy, a feature of nearly
all reduced models employed in practice.
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